Dear Colleagues:

Welcome to the 2012 CTRC-AACR San Antonio Breast Cancer Symposium (SABCS), a joint presentation of the Cancer Therapy & Research Center at the University of Texas Health Science Center at San Antonio, the American Association for Cancer Research, and Baylor College of Medicine. You will have the opportunity over the next several days to acquire new knowledge and information that will have immediate clinical application and, in the near future, bring about changes in the standard of care. This year will see vital and important presentations in the clinical domain, including advances in the value of molecular profiling, answers to evolving issues around surgical management, notable successes in trials of new agents such as TDM-1, and further work on the optimal use of endocrine therapy.

As in the past, you will also find valuable sessions in basic science and translational research across a wide range of topics, including cutting-edge work in genomics, sequencing and associated technologies, research into cancer stem cells and metastatic processes, and genome-based understanding of treatment toxicities. Our program aims to inform workers in all domains about the current frontiers of our knowledge and to highlight paths leading to future progress. We hope not only to share information, but also to encourage development of new and productive collaborations.

To achieve these goals, the symposium unfolds over 5 days. Tuesday afternoon begins with a career development forum for young investigators and educational sessions, together with a variety of presentations on clinical issues. The heart of the meeting takes place over the next 3 days: the oral presentations of submitted work in 6 general sessions and 9 poster sessions, as well as selected poster discussions. Interspersed with these are the 4 invited plenary talks, several award lectures, 3 mini-symposia, clinical and basic science forums and case discussions, and 2 special reports.

And don’t forget Saturday morning. “The Year in Review” brings together a panel of distinguished speakers whose succinct reports provide a synthesis of major developments in breast cancer during the past year—one of the most popular parts of the program.

Finally, make sure to take a little time to enjoy San Antonio’s warm and congenial ambiance, including the food, music, and Christmas lights on the world-famous Riverwalk. A wonderful time to be in the city, and it’s something to remember.

C. Kent Osborne, MD
Peter M. Ravdin, MD, PhD
Carlos Arteaga, MD
Posters Withdrawn (at press time)

The following posters appear in the SABCS abstract book, but were withdrawn by the authors.

P1-04-11 P1-05-17 P2-09-05 P3-02-04 P3-06-21 P4-06-12 P4-07-02 P4-09-12 P4-16-15 P4-17-02
P5-07-06 P6-02-03 P6-04-13 P6-06-04 P6-07-01 P6-07-07 P6-14-01 P6-14-02 PD-04-01 P4-12-02

Posters Reinstated (at press time)

The following posters are listed as “Withdrawn” in the SABCS Pocket Program and the SABCS Abstract Book. They have been reinstated. Reinstated abstracts are also available online at: www.sabcs.org.

P1-07-02

New high-quality HER2 IQFISH pharmDx™ assay with a ½ working day procedure and high concordance to HER2 FISH pharmDx™

Jensen K, Nielsen KV, Andersen L, Müller S, Mollerup J, Matthiesen SH, Schonau A; Dako A/S, Glostrup, Denmark; Dako Denmark, Glostrup, Denmark.

Introduction: HER2 assessment for selection of patients that may benefit from HER2 targeting treatment can be performed by either immunohistochemistry (IHC), fluorescence or chromogen in situ hybridization (FISH or CISH). FISH is a robust and reliable technique for direct visualization and quantitative determination of gene amplifications, deletions and translocations in human cancer cells, but FISH protocols are time-consuming and involve toxic reagents. By introducing a new non-toxic ethylene carbonate based hybridization buffer that perform with very short hybridization times, the total FISH assay time on breast cancer tissue sections can be reduced from the traditional 16-20 hours to 3½-4½ hours.

Material and methods: The new Dako HER2 IQFISH pharmDx™ was compared with Dako HER2 FISH pharmDx™ in a comparative study on 120 breast cancer specimens, and reproducibility of the HER2 IQFISH pharmDx™ assay was investigated in a study comprising 3 different sites and a total of 6 different observers. Samples for the comparative study was evaluated by Dako HercepTest™ to include all IHC scoring groups (0, 1+, 2+, 3+). Slides were stained according to manufacturer’s instructions using microwave oven for heat pre-treatment and RTU pepsin for 3-5 minutes at 37 °C. Hybridization was performed for 2 hours when using HER2 IQFISH pharmDx™ and for 17-20 hours when using HER2 FISH pharmDx™ Kit. All slides were blinded before evaluation. HER2 status was classified as “Non-amplified” when the HER2/CEN17 ratio < 2.0 and “Amplified” when the HER2/CEN17 ratio ≥ 2.0.

Results: The new non-toxic hybridization buffer introduces a major safety improvement since formamide is no longer needed. Significantly shorter hybridization times are required to generate the same signal intensity (1-2 hour hybridization versus overnight). HER2 IQFISH pharmDx™ was compared with the traditional HER2 FISH pharmDx™ in a comparative study on 120 breast tissue specimens of human breast carcinoma. The preliminary data on HER2 status for 78 patients obtained by the two assays gave an overall agreement of 98.7% with lower and upper 95% confidence limits at 94.2% and 99.9%. The Kappa value was 0.96 (95% CI: 0.89-1.00). The p-value for McNemars test was 1.00 indicating absence of bias between the two assays. Disagreement between the two assays was observed for one specimen—a heterogeneous tissue with a small amplified area. Data from the reproducibility study that included site-to-site variation, day-to-day variation and inter-observer variation showed that the assay has a high degree of reproducibility.

Conclusion: The validation studies of the new HER2 IQFISH pharmDx™ showed a very high concordance to the traditional HER2 FISH pharmDx™ and also that the assay is robust and reproducible. Reduction of the overall assay time from a two-day to a half-day procedure for HER2 FISH, offers more flexible laboratory routines and same day reporting for all working days of the week, which could be used for fast and simultaneous FISH and IHC answers and improved patient care. Taken together, the study demonstrates the potential of a new revolutionary platform that enables optimization and acceleration of FISH analysis to the benefit of cancer patients and laboratory personnel.

P1-15-03

Comparison of efficacy of primary prophylaxis with pegfilgrastim, filgrastim and a biosimilar filgrastim in TAC regimen (docetaxel, doxorubicin and cyclophosphamide)

Background: Febrile neutropenia (FN) is a major toxicity of myelosuppressive chemotherapy. Primary prophylactic use of granulocyte colony-stimulating factors (G-CSF) is recommended in high risk FN regimens. The comparison of pegfilgrastim (Peg) and filgrastim (Fil) FN prophylactic effectiveness is still an issue of debate. Very recently Nivestim (Niv), a new biosimilar filgrastim, has also become commercially available. We aimed to compare the efficacy of the 3 mentioned types of G-CSF in the primary prophylaxis of FN.

Methods: Single-center, retrospective study to evaluate the incidence of FN in women with breast cancer treated with adjuvant or neo-adjuvant TAC (FN risk ≥20%). Patients (Pt) were divided in 3 consecutive cohorts according to G-CSF primary prophylaxis (Fil, Peg and Niv). FN was defined as axillary temperature ≥38,3 °C and absolute neutrophil count < 500/ul.
P1-15-03 (continued)

Results: We included a total of 421 women (median age 51 y, 25-76) with Stage II (56%) and Stage III (44%) breast cancer. Age and stage distribution were similar in the 3 cohorts. A single dose of Peg was administered in all 767 cycles (cy). The standard dose of Fil and Niv was 7 daily injections, only in 13% Fil pt and 10% Niv pt < 7 administrations were done. The incidence of FN per patient and per cycle is presented in Table 1. In all cohorts, approximately half of NF episodes occurred in the 1st cycle (48% Fil, 59% Peg, 42% Niv).

<table>
<thead>
<tr>
<th></th>
<th>Fil (147 pts; 840 cy)</th>
<th>Peg (140 pts; 767 cy)</th>
<th>Niv (134 pts; 710 cy)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Pt FN</td>
<td>15.6% (23/147)</td>
<td>8.6% (12/140)</td>
<td>13.4% (18/134)</td>
<td>Fisher test</td>
</tr>
<tr>
<td>IC95%: 10.4-2.8%</td>
<td>IC95%: 4.5-14.5%</td>
<td>IC95%: 8.2-20.4%</td>
<td>p = 0.25</td>
<td></td>
</tr>
<tr>
<td>% Cy FN</td>
<td>3.2% (27/840)</td>
<td>2.2% (17/767)</td>
<td>3.7% (26/710)</td>
<td>Niv vs Peg</td>
</tr>
<tr>
<td>IC95%: 2.2-4.7%</td>
<td>IC95%: 1.3-3.5%</td>
<td>IC95%: 2.4-5.3%</td>
<td>p = 0.12</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: No differences in terms of efficacy existed between Biosimilar Niv and original biological reference Fil. Seven daily injections of Fil and Niv seem equivalent to single dose Peg. Besides efficacy, questions like cost-effectiveness and convenience of administration should be taken into account when approaching this topic. Our data showed a predominance of events in the 1st cycle (regardless of the type of G-CSF). This has been consistently described in the literature and may support the necessity to recommend other NF preventive measures in this cycle.

Posters Rescheduled (at press time)

The following posters have been rescheduled. However, they will retain their original abstract numbers.

PD10-01 will be presented as S1-10 in General Session 1.

P6-04-12 will be presented in Poster Session 1 in the position of PD01-09.
P3-06-34 will be presented in Poster Session 5 in the position of P5-17-08.
P3-07-03 will be presented in Poster Session 2 in the position of P2-10-44.
P4-01-12 will be presented in Poster Session 1 in the position of P1-02-03.
P4-06-07 will be presented in Poster Session 6 in the position of P6-10-08.
P5-07-05 will be presented in Poster Session 4 in the position of P4-08-11.
P5-18-03 will be presented in Poster Session 3 in the position of P3-06-36.
P5-18-25 will be presented in Poster Session 1 in the position of P1-04-12.
P6-07-31 will be presented in Poster Session 2 in the position of P2-07-02.
Title Correction

PS-18-09 A Phase I Study of MM-302, a HER2-targeted Liposomal Doxorubicin, in Patients with Advanced, HER2-positive Breast Cancer

Presenter Changed (at press time)

S1-5

PIK3CA mutations are linked to PgR expression: A Tamoxifen Exemestane Adjuvant Multinational (TEAM) pathology study
Bartlett JMS, Sabine VS, Crazier C, Drake C, Piper T, van de Velde CJH, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, Seynaeve C, Rea D.
Ontario Institute for Cancer Research, Toronto, ON, Canada; University of Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Edinburgh, Scotland, United Kingdom; Leiden University Medical Center, Leiden, Netherlands; University Hospital, Freiburg, Germany; Elblandklinikum, Riesa, Germany; Athens University Medical School, Athens, Greece; St. Augustinus Hospital, Antwerp, Belgium; Erasmus Medical Center-Daniel den Hoed, Rotterdam, United Kingdom; University of Birmingham, Birmingham, United Kingdom.

S5-2

HERA TRIAL: 2 years versus 1 year of trastuzumab after adjuvant chemotherapy in women with HER2-positive early breast cancer at 8 years of median follow up
European Institute of Oncology, Milan, Italy; BrEAST Data Centre, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium; Frontier Science (Scotland) Ltd, Kincraig, Kingussie, United Kingdom; F Hoffmann-La Roche, Basel, Switzerland; Helios Klinikum Berlin-Buch, Akademisches LK der Universität Charité, Berlin, Germany; Royal Marsden Hospital and Institute of Cancer Research, London, United Kingdom; San Raffaele Institute, Milan, Italy; Klinikum Offenbach, Offenbach, Germany; University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Geelong Hospital, Geelong, Australia; The Royal Marsden NHS Trust, London, United Kingdom; Dana-Farber Cancer Institute, Boston, MA; Sanford Research, Sioux Falls, SD; Massachusetts General Hospital Cancer Center, Boston, MA.

Revised Abstracts

The following abstracts were revised after the SABCS 2012 Abstract Book was on press. The revised abstracts are also available online at: www.sabcs.org.

S2-3

Black DM, Jiang J, Kuerer HM, Buchholz TA, Smith BD; MD Anderson Cancer Center, Houston, TX.

Background: Disparities exist in many aspects of standard breast cancer treatment in certain patient populations. In the mid-1990s, axillary sentinel lymph node biopsy (SLNB) was introduced as an alternative to axillary lymph node dissection (ALND) for staging clinically node-negative breast cancer. During the early 2000s, the validity of SLNB was being determined and its technique was being disseminated throughout the surgical community. By the mid to late-2000s, SLNB had been shown to provide accurate axillary staging with lower complications and no difference in survival compared to ALND in node-negative patients. SLNB has now replaced ALND as the accepted method for staging early breast cancer. The purpose of this study is to examine differences in the utilization of SLNB in pathologic node-negative invasive black breast cancer patients compared to white patients as SLNB became standard axillary staging and whether this difference impacted patient complications.

Methods: Using the population-based Surveillance, Epidemiology, and End Results (SEER)-Medicare data, cases of incident, non-metastatic, pathologic node-negative breast cancer in women age ≥66 were identified. Patients were considered to have undergone SLNB if specified by SEER records or if a billing claim for axillary lymphatic mapping was identified. Unadjusted associations of SLNB with race were evaluated using the chi-square test. The Cochran-Armitage test evaluated trends over time. Multivariate logistic regression tested whether race was associated with the use of SLNB after adjustment for clinicopathologic factors. Five-year cumulative incidence of lymphedema assessed via ICD-9 diagnosis codes was measured using the Kaplan-Meier method. Adjusted proportional hazards regression evaluated associations of race and ALND with lymphedema risk.
S2-3 (continued)

Results: Of 31,274 women identified, 1,767 (5.7%) were Black, 27,856 (89%) were White and 1,651 (5.3%) were of other/unknown race. SLNB was performed in 74% of white patients compared to 62% of black patients (P<0.001). Although use of SLNB increased by year for both black and white patients (P<0.001), a fixed disparity in the use of SLNB persisted through 2007.

<table>
<thead>
<tr>
<th>Year</th>
<th>% SLNB in Black Patients</th>
<th>% SLNB in White Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>45%</td>
<td>58%</td>
</tr>
<tr>
<td>2003</td>
<td>56%</td>
<td>63%</td>
</tr>
<tr>
<td>2004</td>
<td>72%</td>
<td>72%</td>
</tr>
<tr>
<td>2005</td>
<td>61%</td>
<td>76%</td>
</tr>
<tr>
<td>2006</td>
<td>71%</td>
<td>81%</td>
</tr>
<tr>
<td>2007</td>
<td>70%</td>
<td>83%</td>
</tr>
</tbody>
</table>

In adjusted analysis, black patients were 33% less likely than white patients to undergo SLNB (relative risk = 0.74, 95% CI 0.67-0.81; P<0.001). Five-year cumulative incidence of lymphedema was 11.4% in patients undergoing ALND vs. 6.3% in patients undergoing SLNB (adjusted HR 1.92, 95% CI 1.75-2.10; P<0.001). Overall, black race was also associated with a higher risk of lymphedema (adjusted HR 1.40; 95% CI 1.20-1.63; P<0.001). However, among patients undergoing SLNB, whites and blacks had similar risks of lymphedema (6.2% and 7.7%, respectively; P=0.08).

Conclusion: Even with the increased use of SLNB and its acceptance as standard axillary staging for node-negative breast cancer patients, disparities persist in its underutilization in appropriate black patients compared to white patients by as much as 26%. This racial disparity in SLNB use translated to a higher risk of lymphedema for black patients. Improving surgeon practices, the multidisciplinary team approach, and patient education are important in optimizing the beneficial impact of SLNB and reducing complications from unnecessary ALNDs in all patients with early stage breast cancer. Future research is needed to delineate mechanisms underlying this persistent disparity and to identify strategies to mitigate it.

S3-2

Chemotherapy prolongs survival for isolated local or regional recurrence of breast cancer: The CALOR trial (Chemotherapy as Adjuvant for Locally Recurrent breast cancer; IBCSG 27-02, NSABP B-37, BIG 1-02)

Introduction Patients with isolated local and regional recurrences (ILRR) of breast cancer (BC) have a high risk of developing distant metastasis and dying from BC. We investigated the impact of chemotherapy (C) on disease-free survival (DFS) and overall survival (OS) after ILRR.

Methods Patients with resected ILRR were stratified according to prior chemotherapy (yes vs. no), ER and/or PgR status of the recurrent tumor (both negative vs. either positive), and location of recurrence (breast vs. scar/chest wall vs. lymph nodes). Radiation, hormone and HER2 directed therapies were delineated in the protocol. Participants were randomly assigned to receive C or none. Multidrug C for at least 4 courses was recommended. Drug selection was at the discretion of the investigator. Slow accrual led to premature closure of the trial before achieving the planned sample size of 265.
S3-2 (continued)

Results The trial accrued 162 patients (C, 85; control, 77) from 2002-2010. The groups were balanced in regard to the characteristics listed in the table below.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Chemotherapy (C)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=85</td>
<td></td>
<td>N=77</td>
</tr>
<tr>
<td>Median age (range)</td>
<td>56 (38-71)</td>
<td>56 (31-81)</td>
</tr>
<tr>
<td>Postmenopausal (at the time of ILRR)</td>
<td>65 (76%)</td>
<td>63 (82%)</td>
</tr>
<tr>
<td>Median disease-free interval (range) (time from primary surgery to surgery for ILRR, years)</td>
<td>5 (0.3-32)</td>
<td>6 (0.4-22)</td>
</tr>
<tr>
<td>Prior adjuvant chemotherapy</td>
<td>49 (58%)</td>
<td>52 (68%)</td>
</tr>
<tr>
<td>ILRR in breast</td>
<td>47 (55%)</td>
<td>41 (53%)</td>
</tr>
<tr>
<td>ILRR chest wall/mastectomy scar</td>
<td>27 (32%)</td>
<td>26 (34%)</td>
</tr>
<tr>
<td>ILRR regional lymph nodes</td>
<td>11 (13%)</td>
<td>10 (13%)</td>
</tr>
<tr>
<td>ILRR: ER positive</td>
<td>56 (66%)</td>
<td>48 (62%)</td>
</tr>
</tbody>
</table>

At a median follow up of 4.9 years, there were 24 (28%) DFS events and 9 (11%) deaths in the C group compared with 34 (44%) DFS events and 21 (27%) deaths in the control group, corresponding to a 5-year DFS of 69% vs. 57%, [DFS HR (C/control) = 0.59, 95% CI (0.35, 0.99)], p =0.046] and a 5-year OS of 88% vs. 76%, [OS HR (C/control) = 0.41, 95% CI (0.19, 0.89)], p =0.02]. The results remained significant for both DFS and OS in multivariable Cox proportional hazards modeling controlling for ILRR location, disease-free interval, ER status and prior adjuvant chemotherapy. Adjuvant C was particularly effective for women with ER-negative ILRR: 5-year DFS 67% vs. 35%, [DFS HR (C/control) = 0.32, 95% CI (0.14, 0.73)], p =0.007] and OS 79% vs. 69%, [OS HR (C/control) = 0.43, 95% CI (0.15, 1.24)], p =0.12]. Results for the ER-positive ILRR cohort were: 5-year DFS 70% vs. 69%, [DFS HR (C/control) = 0.94, 95% CI (0.47, 1.89)], p =0.87] and OS 94% vs. 80%, [OS HR (C/control) = 0.40, 95% CI (0.12, 1.28)], p =0.12].

Conclusion Adjuvant chemotherapy should be recommended for patients with completely resected isolated loco-regional recurrences of breast cancer, in particular, if the recurrence is not sensitive to endocrine therapy.

Funding NCI PHS grants U10-CA-37377, -69974, -12027, -69651, CA-75362.

P2-10-29

Time dependent breast cancer metastasis prediction using novel biological imaging, clinico-pathological and genomic data combined with Bayesian modelling to reduce over-fitting and improve on inter-cohort reproducibility.

Background: Breast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical evidence indicates that future prognostic signatures need evaluation in the context of early versus late metastatic risk prediction. The aim of our work was to identify biologically validated quantitative imaging parameters with improved correlation to clinical outcome, and to address some of the remaining obstacles for a truly robust prognostic model in clinical use.

Method: We identified 4 seed proteins (ezrin/radixin/moesin-cofilin), along with several kinases as biologically relevant subnetwork of proteins that control tumor cell motility and metastasis. Patient-derived breast cancer tumour samples were used to perform a combination of imaging methods such as Fluorescence lifetime imaging microscopy, automated segmentation and co-localisation intensity analysis. A complexity optimized Bayesian proportional hazard regression model was performed on a total of 419 breast cancer patients to validate time dependent predictions using traditional clinico-pathological, genomic and our novel optical imaging-derived parameters. An independent dataset of 300 patient samples from the Leeds Institute of Molecular Medicine is currently being evaluated, representing a large cross centre validation of our integrated model.
P2-10-29 (continued)

Results: We demonstrate that the traditional gold standard clinico-pathological variables are poor predictors for patients that survive long periods, and that their predictive significance (in terms of hazard ratios) varies significantly between two temporal cohorts where the adjuvant treatments are vastly different. Moreover, we investigate the predictive accuracy of a combined imaging/clinicopathological model compared with genomic/clinicopathological models. We demonstrate how to reduce over-fitting to help improve the performance of prognostic models. Results of an integrated model combining genomic and imaging parameters are still awaited.

Discussion: We have produced the first optical imaging-derived multivariate tumour metastatic signature, which measures underlying key biological variables involved in regulating cancer cell motility. Using Bayesian proportional hazards regression in a time-dependent manner, we highlight the inadequacies of existing prediction tools and present a model combining the clinicopathological parameters with our imaging-based metastatic signature, as an integrative reproducible prognostic tool across different temporal cohorts.

PD03-08

Statin use and improved outcome in primary inflammatory breast cancer: retrospective cohort study
Brewer TM, Masuda H, Iwamoto T, Liu P, Shen Y, Liu DD, Kai K, Barnett CM, Woodward WA, Reuben JM, Yang P, Hortobagyi GN, Ueno NT; MD Anderson Cancer Center, Houston, TX; Eastern Virginia Medical School, Norfolk, VA; University of Florida, Gainesville, FL; Okayama University Hospital, Okayama, Japan.

Background Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer. HMG-CoA reductase inhibitors (statins) are cholesterol reducing agents with pleiotropic effects, including antitumorigenic and anti-inflammatory properties. We hypothesized that statins reduce the metastatic potential in primary IBC.

Methods We retrospectively reviewed 724 patients diagnosed with and treated for primary IBC at The University of Texas MD Anderson Cancer Center between Jan. 12, 1995 and Jan. 27, 2011. Patients with records indicating statin use at the time of IBC diagnosis on the electronic medical record were compared with those without. We further compared outcomes stratified by statin type (hydrophilic [H] versus lipophilic [L]). We used the Kaplan-Meier method to estimate the median disease-free survival (DFS) after surgery, overall survival (OS), and disease specific survival (DSS), followed by Cox proportional hazards regression model to test statistical significance of several potential prognostic factors.

Results For primary IBC patients who had information on their statin use status at IBC diagnosis, the median DFS time were 4.88 years, 2.47 years and 1.76 years (P = 0.04); the median OS time 5.05 years, 3.79 years and 4.32 years (P = 0.35); and the median DSS time 5.10 years, 3.79 years and 4.52 years (P = 0.37), for patients who took “H”, “L” and no statin, respectively. In multivariable Cox model stratified by radiation therapy, ER/PR status and HER2 status, statin “H” use was associated with significantly improved DFS compared to no statin use (HR=0.49; 95% CI: 0.28 – 0.84; p<0.01), adjusted for lymphatic/vascular invasion. Although there is a trend that patients who used statin “H” had a longer time to death compared to patients who did not take statin, it did not reach statistical significance for OS (HR=0.80; 95% CI: 0.43 – 1.49; p=0.49) and DSS (HR=0.85; 95% CI: 0.46 – 1.57, p=0.59) after adjustment for lymphatic/vascular invasion, nuclear grade and surgery status within one year.

Conclusions Hydrophilic statin use was associated with improved DFS. There was a trend for reduced HR in OS and DSS among primary IBC patient who used hydrophilic statins. A prospective randomized study to evaluate the potential survival benefits of statins in primary IBC population is warranted.

NOTE: Other revised abstracts will appear in future issues of the newsletter.
Thanks to the People Who Make This Happen

The part of SABCS that you see when you come to San Antonio for 5 days each year is the result of months of planning and organization that starts almost as soon as the prior year’s meeting ends in December. The members of the Executive Committee, the Program Planning Committee, and the Abstract Review Committee work hard all year long to determine the focus of the meeting, line up speakers, coordinate special events, and review the thousands of abstracts that are submitted, selecting those that will most accurately represent the leading edge of breast cancer research. The names of the individual members of these committees can be found in your Pocket Program, but we wanted to take the opportunity here to publicly thank them for all their hard work in making SABCS one of the premier single-site cancer conferences in the world.

SABCS Scholarship Recipients

Five programs provided scholarships designed to promote the education and professional development of early-career scientists who are actively pursuing research in breast cancer by facilitating their attendance at SABCS. Scholarships were awarded to graduate students, medical students, residents, and clinical and postdoctoral fellows whose abstracts were accepted for presentation, based on the quality of the abstracts. This year’s awardees are:

<table>
<thead>
<tr>
<th>Scholarship Program</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACR Scholar-in-Training Awards</td>
<td>To provide funding for graduate and medical students, postdoctoral fellows, and physicians-in-training who are presenters of abstracts at the San Antonio Breast Cancer Symposium</td>
</tr>
<tr>
<td>Avon Foundation-AACR International Scholar-in-Training Grants</td>
<td>To provide funding for scientists-in-training from abroad, working in any subspecialty of breast cancer research, who are presenters of meritorious abstracts at the San Antonio Breast Cancer Symposium</td>
</tr>
<tr>
<td>SABCS Basic Science Scholars</td>
<td>For laboratory-based investigators-in-training whose work focuses on the biology of breast cancer and preclinical models of its development and progression</td>
</tr>
<tr>
<td>SABCS Clinical Scholars</td>
<td>For clinical scientists-in-training who are actively pursuing clinical or clinical/translational research in breast cancer</td>
</tr>
<tr>
<td>AACR Scholar-in-Training Awards, supported by Susan G. Komen for the Cure</td>
<td>To provide funding for early-career scientists and scholars who are presenting meritorious breast cancer research at the San Antonio Breast Cancer Symposium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scholarship Program</th>
<th>Awardees</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACR Scholar-in-Training Awards</td>
<td>Scott H. Bradshaw, Olöf Bjarnadottir, Takae M. Brewer, Kevin J. Cheung, Henry Jacob Conter, Bernadette Anna Sophia Jaeger, Brant Jarrett, Elizabeth M. Kass, Samaya Rajeshwari Krishnan, Marie-Claude Perry, Emily Louise Postma, Andrea Saur, Rui Vasco Simões</td>
</tr>
<tr>
<td>Avon Foundation-AACR International Scholar-in-Training Grants</td>
<td>Sung Gwe Ahn, Anant Dinesh, Jingxian Ding, Yuyao Du, Kallergi Galatea, Ishita Gupta, Li Jun-Jie, Jae-Cheol Jo, Jisun Kim, Young Wha Koh, Felicia Chung Fei Lei, Hong Ling, Maria A. Papadaki, Gonzalo Ricardo Sequeira, Wenjin Yin</td>
</tr>
<tr>
<td>SABCS Basic Science Scholars</td>
<td>Sierra Colavito, Nefeli E. Georgoulia, Nicole Salazar, Jessica J. Tao</td>
</tr>
<tr>
<td>SABCS Clinical Scholars</td>
<td>Diana Esperanza Ramirez Ardila, Karin Beelen, Elisa Ka Yee Chan, Caroline A. Drukker, Laura Paladini</td>
</tr>
<tr>
<td>AACR Scholar-in-Training Awards, supported by Susan G. Komen for the Cure</td>
<td>Asma Ali, Simone Anfossi, Farrah Mikhail Datko, Michael J. DeLeo, III, Jennifer B. Dennison, Pinkal Desai, Debora Fumagalli, Prudence J. Hardefeldt, Daniel L. Hertz, Charlotte Levin Tykjar Jørgensen, Lara Carolina Alvarez de Lacerda, Elgene Lim, Ines Maria Vaz Duarte Luis, Sonia Kim Anh Nguyen, Davinia Shi En Seah, Stina Mui Singel, Rebecca Marie Speck, Yayoi Takamoto, Marijke Rehema Wevers</td>
</tr>
</tbody>
</table>
Plenary Lectures
This year’s plenary lectures examine a range of issues, including advances in understanding the roles of hormones, the use of radiotherapy and its potential for benefit and harm, and the recently developed ABC1 guidelines from the Advanced Breast Cancer First International Consensus Conference.

- Cathrin Brisken, MD, PhD, will present the first plenary lecture Wednesday morning at 8:00 AM on *Hormones and the Breast: Local and Environmental Interactions*.
- Jason S. Carroll, PhD, will deliver the second plenary lecture Thursday morning at 9:00 AM: *Estrogen Receptor Cistrome: Implications for Breast Cancer*.
- John Yarnold, MD, will discuss *Breast Radiotherapy: Fractionation and Other Fashions* in Plenary Lecture 3, on Friday morning, at 9:00 AM.
- Fatima Cardoso, MD, will present the fourth and final plenary lecture on Saturday at 8:30 AM: *1st International Consensus Guidelines Conference for Advanced Breast Cancer - ABC1*.

All plenary lectures take place in Exhibit Hall D.

The William L. Mcguire Memorial Lecture
The William L. McGuire Memorial Lectureship was established in 1992 to commemorate the researcher whose work played a major role in introducing estrogen receptor assays on breast tumor tissue as a guide to treatment decisions. Dr Gabriel Hortobagyi, who will deliver this year’s lecture, is widely recognized for developing combined modality therapy, initially used to treat inoperable breast tumors and later adapted for all stages of the disease. He also helped conduct clinical trials of multidisciplinary treatment regimens that have become standard practice for managing breast cancer and are widely regarded as contributing to improved survival for many patients. Dr Hortobagyi and his colleagues also aided in establishing a role for bisphosphonates in the management of patients with bone metastases and introducing the use of paclitaxel and docetaxel in the treatment of metastatic and primary breast cancer.

Neoadjuvant Systemic Therapy: Promising Experimental Model, or Improved Standard of Care?
Wednesday, December 5, 11:15 AM
Gabriel N. Hortobagyi, MD
UT MD Anderson Cancer Center
Dr Hortobagyi chairs the department of breast medical oncology and directs the Breast Cancer Research Program at the University of Texas MD Anderson Cancer Center, where he also serves as professor of medicine and holds the Nellie B. Connally Chair in Breast Cancer.

Susan G. Komen for the Cure® Brinker Awards
Established by Susan G. Komen for the Cure® in 1992, the Brinker Award for Scientific Distinction recognizes leading scientists for their lifetime achievements in the fields of breast cancer research, screening, or treatment. These awards are presented in 2 categories: basic science and clinical research.

The presentation of the Brinker Awards and the Brinker Award lectures will take place this afternoon from 4:00 PM to 5:00 PM in Exhibit Hall D.

How Does HER2 Contribute to Breast Cancer Progression?
Wednesday, December 5, 4:00 PM
Yosef Yarden, PhD
Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
The Basic Science award is presented to a researcher who has added substantively to our understanding of the basic biology of breast cancer or to the development of methodologies that further our ability to unravel its genetic and molecular basis. Professor Yarden receives this year’s award for his extensive contributions to our understanding of the biology of growth factors and their receptors, together with the role they play in human cancers. His research was crucial to establishing a role for these receptors—particularly the HER2 receptor—as prime targets for cancer drugs. His work has influenced and may be expected to impact breast cancer research and clinical advances for years to come.

“Professor Yarden’s work with the Epidermal Growth Factor Receptor family, which includes HER2, has played an important part in educating us, and in showing the way for new life-saving treatments,” said George W. Sledge, MD, chief scientific advisor and co-chair of Komen’s Scientific Advisory Board. “He is one of the great laboratory scientists of our time, and we are delighted to honor him for his many contributions to our field.”
Susan G. Komen for the Cure® Brinker Awards (continued)

Older Women and Breast Cancer: Challenges and Opportunities
Wednesday, December 5, 4:00 PM
Hyman B. Muss, MD
Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill

The Clinical Research award is presented to a clinician who has significantly furthered the identification of new approaches to prevention, detection, and treatment of breast cancer and its translation into clinical care. Dr Muss is receiving this year’s award for his critical contributions to treatment, in particular with respect to older women. He developed clinical trials that specifically targeted these patients and provided oncology medicine with a foundation to offer geriatric patients state-of-the-art treatments that positively advance standard of care and quality of life. His work continues to improve the lives of countless women every year, and his impact on the breast cancer community will be felt for years to come.

“Hy Muss is a thoughtful researcher and clinician who has made innumerable contributions to our current treatment of breast cancer,” said Eric Winer, MD, Komen’s chief scientific advisor and co-chair of its Scientific Advisory Board. “He has long been a believer in personalized medicine, and recognized over 2 decades ago that no single approach was appropriate for all patients. His dedication to clinical studies in older women with breast cancer has provided us with critical insights about treatment of women over 65. Dr Muss has always been viewed as an exceptionally kind and understated individual, and has maintained an uncompromising focus on training the next generation of cancer researchers.”

AACR Outstanding Investigator Award for Breast Cancer Research

Funded by Susan G. Komen for the Cure®, the AACR Outstanding Investigator Award for Breast Cancer Research is presented to an investigator no more than 50 years of age whose novel and significant work has had, or may have, a far-reaching impact on the etiology, detection, diagnosis, treatment, or prevention of breast cancer.

Breast Tumor Evolution: Drivers and Clinical Relevance
Thursday, December 6, 2012, 11:30 AM
Kornelia Polyak, MD, PhD
Dana-Farber Cancer Institute, Harvard Medical School

Dr Kornelia Polyak heads a research program focused on the molecular analysis of breast cancer with a view to generating advances in clinical practice. Making innovative use of new gene sequencing technologies, her laboratory spearheaded seminal advances to help identify genetic changes involved in breast cancer progression, and her published research has been at the forefront of efforts to provide comprehensive genomic profiles of all the known cell types involved in DCIS, invasive breast cancer, and normal breast tissue. While deciphering the evolutionary dynamics of somatic changes in breast cancer, she has also investigated the role of the microenvironment, employing a combined experimental and computational approach to help illuminate the role of epigenetic alterations. She also participated in recent research elucidating the significance of stem-like cells in tumorigenesis, with considerable implications for the biology of cancer more generally. “We study breast tumors as ecosystems,” she has written, “and apply ecological and evolutionary methods to better understand the clinical implications of heterogeneity.” Her recent work has also identified novel kinases amplified in breast tumors that can provide targets for novel kinase inhibitors. Dr Polyak is Professor of Medicine at the Dana-Farber Cancer Institute, where she has been an independent researcher since 1998.

AACR Distinguished Lectureship in Breast Cancer Research

Genes and the Microenvironment: The Twosome of Gene Expression and Breast Cancer
Friday, December 7, 11:30 AM
Mina J. Bissell, PhD
Lawrence Berkeley National Laboratory, Berkeley, CA

The AACR Distinguished Lectureship in Breast Cancer Research has been established to recognize outstanding science that has inspired or has the potential to inspire new perspectives on the etiology, diagnosis, treatment, or prevention of breast cancer.

Dr Mina J. Bissell’s innovative breast cancer research has profoundly impacted our understanding of cancer biology, especially the way that loss of crucial information concerning 3-dimensional organ architecture, which is responsible for normal behavior, influences the genesis of tumors. Her work ultimately demonstrated the pivotal importance of reciprocal signaling between the nucleus and extracellular matrix, and she has argued a causative role for imbalances in this dynamic exchange of information. Data generated by Dr Bissell and her team over several decades indicate that it is not just what goes wrong inside the nucleus (the genetic mutations) that drives cancer, but also disruption of microenvironmental control.

Dr Bissell, who earned a bachelor’s degree from Harvard University and a doctorate in microbiology and molecular genetics from Harvard Medical School, was director of all life sciences at Lawrence Berkeley National Laboratory for more than 12 years.
2012 Foundation, Industry, and Agency Support

We are proud to acknowledge the following for their contributions to and generous support of our program (at press time)

PREMIER
- Genentech
 - A Member of the Roche Group

ANGEL
- Amgen
- Celgene Corporation
- Eisai, Inc.
- Genomic Health
- Novartis Oncology

PATRON
- AlphaMed Press/The Oncologist
- Eli Lilly and Company

MAJOR SUPPORTER
- AstraZeneca
- Celltrion Healthcare Co., Ltd.
- GE Healthcare
- Nektar Therapeutics

CONTRIBUTOR
- Agenda
- Bristol-Myers Squibb
- Fresenius Kabi Deutschland GMBH
- Merck
- Myriad Genetic Laboratories, Inc.
- Nanostring Technologies, Inc.
- Pfizer

DONOR
- Almac
- Ambry Genetics
- BioMed Central
- Boehringer Ingelheim Pharmaceuticals, Inc.
- Caris Life Sciences
- Carl Zeiss Meditec, Inc.
- DARA Biosciences
- Dilon Diagnostics
- Dune Medical Devices
- Elekta, Inc.
- Endomagnetics Ltd.

DONOR (cont)
- Faxitron Biptics
- Genoptix, Inc.
- GlaxoSmithKline (Commercial)
- GlaxoSmithKline (R&D)
- HistoRx, Inc.
- Inspire
- Leica Microsystems
- MammoVome
- ProStrakan
- Scion Medical Technologies
- Varian Medical Systems
- VerideX
- Xentech

CONFERENCE GRANT
- American Cancer Society, Texas Division
- National Cancer Institute

SABCS gratefully acknowledges Susan G. Komen for the Cure® for generous support of the
AACR Outstanding Investigator Award for Breast Cancer Research,
CTCR-AAACR San Antonio Breast Cancer Symposium Educational Sessions,
AACR Scholar-in-Training Awards

SABCS wishes to thank The Avon Foundation for support of the
Avon Foundation-AAACR International Scholar-In-Training Grants
Please be sure to visit SABCS exhibitors.
See the Exhibitors section of the SABCS Mobile App for more information from these companies.
(at press time)

• ABCD: After Breast Cancer Diagnosis
• ACR Image Metrix
• Agenda Inc.
• Alamo Breast Cancer Foundation
• Almac
• Ambry Genetics
• American Association for Cancer Research (AACR)
• American Cancer Society
• American Society of Clinical Oncology (ASCO)
• Amgen
• AstraZeneca
• Best of SABCS — Encore Medical Education
• BioMed Central
• Boehringer Ingelheim Pharmaceuticals, Inc.
• Breast Cancer Action
• Bristol-Myers Squibb
• Cancer Genetics Lab at Baylor College of Medicine
• Cancer Support Community
• Care Wise Medical Products
• Caris Life Sciences
• Carl Zeiss Meditec, Inc.
• Celgene Corporation
• Celltrion Healthcare Co., Ltd.
• City of Hope
• DARA Biosciences
• Dilon Diagnostics
• Dune Medical Devices
• Edith Sanford Breast Cancer Foundation
• Eisai, Inc.
• Elekta, Inc.
• Eli Lilly and Company
• Elsevier
• Endomagnetics Ltd.
• Faxitron Bioptics
• FORCE: Facing Our Risk of Cancer Empowered
• GBCC2013 Secretariat (Global Breast Cancer Conference)
• GE Healthcare
• Genentech, A Member of the Roche Group
• Genomic Health, Inc.
• Genoptix, Inc.
• GlaxoSmithKline (Commercial)
• GlaxoSmithKline (R&D)
• Harborside Press
• HER2 Support.org
• HistRx, Inc.
• Inspire
• Leica Microsystems
• Lilly Oncology On Canvas
• Lippincott Williams & Wilkins
• Mammothome
• Metastatic Breast Cancer Network
• Myriad Genetic Laboratories, Inc.
• Nanostring Technologies, Inc.
• National Accreditation Program for Breast Centers
• Nektar Therapeutics
• Novartis Oncology
• The Oncologist
• Patient Access Network (PAN) Foundation
• Patient Advocate Foundation
• ProStrakan
• Scion Medical Technologies
• Sharsheret: Your Jewish Community Facing Breast Cancer
• Susan G. Komen for the Cure*
• TRIO (Translational Research in Oncology)
• Varian Medical Systems
• Veridex, LLC
• Xentech
• Young Survival Coalition

This newsletter is brought to you by Genentech.

Genentech
A Member of the Roche Group